Chem. Ber. 116, 3406 - 3412 (1983)

Dreikernige Ruthenium-Clusteranionen des Typs [Ru₃(CO)₉(SiR₂¹R²)(PR₃³)₂]

Gerhard Herrmann und Georg Süss-Fink*

Laboratorium für Anorganische Chemie der Universität Bayreuth, Universitätsstraße 30, D-8580 Bayreuth

Eingegangen am 7. Februar 1983

Die Umsetzung von Na[HRu₃(CO)₁₀(SiR₂¹R²)₂] mit phosphorhaltigen Liganden PR₃³ führt zu dreikernigen Clusteranionen des Typs [Ru₃(CO)₉(SiR₂¹R²)(PR₃³)₂]⁻, die sich als Bis(triphenylphosphoranyliden)ammoniumsalze isolieren lassen. Aufgrund der spektroskopischen Befunde wird für die Anionen die Struktur eines gleichschenkligen Dreiecks vorgeschlagen; die beiden Phosphanliganden und die Silylgruppe besetzen dabei offenbar je eine äquatoriale Position an einem der drei Rutheniumatome.

Trinuclear Ruthenium Cluster Anions of the Type [Ru₃(CO)₉(SiR₂¹R²)(PR₃³)₂]

The reaction of $Na[HRu_3(CO)_{10}(SiR_2^1R^2)_2]$ with phosphorous ligands leads to trinuclear cluster anions of the type $[Ru_3(CO)_9(SiR_2^1R^2)(PR_3^3)_2]^-$ which can be isolated as the bis(triphenylphosphoranyliden)ammonium salts. On the basis of the spectroscopic data the structure of an isosceles triangle is proposed for the anions; the two phosphane ligands and the silyl group are assumed to occupy an equatorial position at each of the three ruthenium atoms.

Das Clusteranion $[HRu_3(CO)_{10}(SiEt_3)_2]^-$ spielt bei Silylierungsreaktionen mit $[HRu_3(CO)_{11}]^-$ als Katalysator eine entscheidende Rolle¹⁾; es wurde bei der Hydrosilylierung von Kohlendioxid²⁾ sowie bei der Silacarbonylierung von Ethylen und Propylen³⁾ im Reaktionsgemisch nachgewiesen. Von einer systematischen Untersuchung der Chemie der dreikernigen Anionen $[HRu_3(CO)_{10}(SiR_2^1R^2)_2]^{-4)}$ ist Aufschluß über die Reaktivität dieser Cluster im Hinblick auf ihre katalytischen Eigenschaften zu erwarten.

Im folgenden berichten wir über die Reaktion der Anionen $[HRu_3(CO)_{10}(SiR_2^1R^2)_2]^{-1}$ mit phosphorhaltigen Liganden PR_3^3 und über die Charakterisierung der neuen Clusteranionen 1-7, die nach Gleichung (1) gebildet werden. Die Freisetzung von Triorganylsilan und Kohlenmonoxid wurde im Falle $R^1 = R^2 = R^3 = Ph^1H-NMR-spektroskopisch bzw. gaschromatographisch nachgewiesen.$

$$[HRu_{3}(CO)_{10}(SiR_{2}^{1}R^{2})_{2}]^{-} + 2 PR_{3}^{3} \xrightarrow{THF} [Ru_{3}(CO)_{8}(SiR_{2}^{1}R^{2})(PR_{3}^{3})_{2}]^{-} + HSiR_{2}^{1}R^{2} + CO (1)$$

			1-7				
		R^2			R^1	R^2	R ³
1	Ph	Ph	Ph Me Cyclohexyl OMe	5	Et	Et Me Me	$\mathbf{P}\mathbf{h}$
2	Ph	$\mathbf{P}\mathbf{h}$	Me	6	Εt	Me	$\mathbf{P}\mathbf{h}$
3	Ph	Ph	Cyclohexyl	7	Ph	Me	$\mathbf{P}\mathbf{h}$
4	Ph	$\mathbf{P}\mathbf{h}$	OMe		l		

© Verlag Chemie GmbH, D-6940 Weinheim, 1983 0009 - 2940/83/1010 - 3406 \$ 02.50/0

Tab. 1. IR- und NMR-Daten der Salze der Clusteranionen $[Ru_3(CO)_9(SiR_2^{\frac{1}{2}}R^2)(PR_3^{\frac{3}{2}})_2]^{-}(1-7)$

	Kation	v(CO) [cm ⁻¹] ^{a)}	δ(¹ H) [ppm] ^{b)}	δ(³¹ P) [ppm] ^{c)}
1	$[N(PPh_3)_2]^+$	2016 w, 1958 m (sh), 1941 s (br)	7.80 – 7.08 (m)	+ 24.63 (s); +46.71 (s)
7	$[N(PPh_3)_2]^+$	2015 w, 1981 w (sh), 1935 s (br) 1900 m (sh)	7.80 ~ 7.00 (m, 45) 1.45 (d, 18)	+ 24.63 (s); -8.62 (s)
e	$[N(PPh_3)_2]^+$	2015 w, 1981 m, 1950 m (sh), 1935 s (br), 1908 m (sh)	7.70-7.38 (m, 45) 1.77-0.82 (m, 66)	+24.90 (s); +42.80 (s)
4	$[N(PPh_3)_2]^+$	2029 w, 1953 s (br)	7.80 – 7.00 (m, 45) 3.54 (d, 18)	+24.83 (s); +157.88 (s)
w	$[N(PPh_3)_2]^+$	2015 w, 1980 w (sh), 1955 m (sh), 1940 s (br)	7.80 – 7.26 (m, 60) 1.00 – 0.88 (m, 15)	+24.63 (s); +46.84 (s)
	[NEt ₄] ⁺	2016 w, 1980 w (sh), 1953 m (sh) 1938 s (br)	7.59 – 7.32 (m, 30) 3.36 (q, 8) 1.28 (tt, 12) 1.04 – 0.90 (m, 15)	+ 42.33 (s)
•	[N(PPh ₃) ₂] ⁺	2020 w, 1983 w (sh), 1955 m (sh) 1940 s (br)	7.73 – 7.23 (m, 60) 0.98 – 0.77 (m, 10) 0.27 (s, 3)	+ 24.90 (s); + 47.38 (s)
7	[N(PPh ₃) ₂] ⁺	2019 m, 1979 s, 1960 s (sh) 1945 vs (br), 1902 m (sh)	7.77 – 7.07 (m, 70) 0.87 (s, 3)	+25.03 (s); +46.70 (s)
a) In THF-Lösung.	- b) In [D ₆]Aceton be	a) In THF-Lösung b) In [D ₆]Aceton bei 20°C (bez. auf TMS) c) In [D ₆]Aceton bei 20°C (bez. auf 85proz. Phosphorsäure).	on bei 20°C (bez. auf 85pr	oz. Phosphorsäure).

Chem. Ber. 116 (1983)

Die Reaktion (1) verläuft in THF-Lösung; die anionischen Cluster 1, 2, 3, 5 und 6 entstehen bei Raumtemperatur, zur Bildung von 4 und 7 sind Temperaturen zwischen 40 und 65°C erforderlich. Die neuen Clusteranionen lassen sich als Bis(triphenylphosphoranyliden)ammoniumsalze in Form roter Kristalle mit Ausbeuten von über 80% isolieren. Die Salze sind im festen Zustand mäßig luftempfindlich; ihre Lösungen zersetzen sich dagegen an Luft ziemlich rasch.

Die IR-Lösungsspektren der Clusteranionen 1-7 zeigen im Carbonylbereich ausschließlich Absorptionen terminaler CO-Liganden; in den $^1\text{H-NMR-Spektren}$ finden sich neben den Resonanzen der Protonen des $N(PPh_3)_2$ -Kations die Signale der $SiR_2^1R^2$ - und der PR_3 -Liganden. Im Hinblick auf eine eindeutige Zuordnung der Signale im $^1\text{H-NMR-Spektrum}$ wurde das Anion 5 ($R^1=R^2=\text{Et}$; $R^3=\text{Ph}$) auch als Tetraethylammoniumsalz isoliert; das Integralverhältnis der $^1\text{H-Resonanzen}$ zeigt erwartungsgemäß, daß auf ein NEt_4 -Kation zwei PPh_3 -Liganden und eine $SiEt_3$ -Gruppe kommen (vgl. Tab. 1). Im $^{31}\text{P-NMR-Spektrum}$ treten die Resonanzen der beiden PR_3^3 -Liganden als ein Singulett auf; im Falle des Anions 1 ließ sich bei $-90\,^{\circ}\text{C}$ die Aufspaltung dieses Singuletts in zwei Signale nachweisen (vgl. Abb. 3).

Für die Clusteranionen 1-7 wird die Struktur eines geschlossenen Ru₃-Dreiecks vorgeschlagen, dessen Metallatome jeweils drei terminale Carbonylgruppen tragen. Die Phosphanliganden und die Silylgruppe sitzen an jeweils einem der drei Rutheniumatome; sie nehmen wegen ihres Raumbedarfs vermutlich eine äquatoriale Position ein (vgl. Abb. 1).

Dieser Strukturvorschlag gründet sich auf folgende Befunde für das Anion 1 ($R^1 = R^2 = R^3 = Ph$): Die Elementaranalyse des Bis(triphenylphosphoranyliden)ammoniumsalzes steht im Einklang mit der Formel [N(PPh₃)₂][Ru₃(CO)₉(SiPh₃)(PPh₃)₂]⁶; nach Leitfähigkeitsmessungen⁷ in Nitromethan liegt ein 1:1-Elektrolyt vor (Äquivalentleitfähigkeit $\Lambda_M = 41.8~\Omega^{-1} cm^2~mol^{-1}$ in 10^{-3} M Lösung). Eine Molmassebestimmung nach der Dampfdruckmethode (in THF) ergab unter Berücksichtigung eines idealisierten van't Hoff-Faktors von i = 2 (für 1:1-Elektrolyte) den Wert 1892 (berechnet 1877.9). Im ²⁹Si-NMR-Spektrum (CD₂Cl₂/CHCl₂F) wird bei -90°C nur ein Signal bei $\delta = 22.8$ (bez. auf TMS) beobachtet. Das ¹³C-NMR-Spektrum einer zu etwa 30% ¹³C-angereicherten Probe zeigt im Carbonylbereich bei -90°C sechs Signale [$\delta = 224.1$ (a), 220.1 (b), 219.2 (c), 204.6 (d), 203.5 (e), 203.3 (f)]. Die Signale a, b und d zeigen infolge von ³¹P-¹³C-Kopplungen Dublettstruktur; vermutlich ist auch das Signal e zu einem Dublett aufgespalten, wobei die zweite Signalhälfte von Signal f überlagert ist. Eine versuchsweise Zuordnung der Signale ist in Abb. 1 gegeben.

Die Dublettsignale a und b werden aufgrund der ³¹P-¹³C-Kopplungen und in Anbetracht der bei Temperaturerhöhung eintretenden dynamischen Effekte den axialen Carbonylgruppen 1,1' und 2,2' an den phosphansubstituierten Ru-Atomen zugeordnet; die Dublettsignale d und e entsprechen vermutlich den äquatorialen Carbonylliganden 4 und 5. Die beiden Singuletts c und f lassen sich den Carbonylgruppen am silylsubstituierten Rutheniumatom zuordnen; aufgrund der Signalintensitäten wird das große Signal c den beiden axialen Carbonylliganden 3 und 3', das kleine Signal f dem äquatorialen Carbonylkohlenstoff 6 zugeschrieben.

Bei Temperaturerhöhung von -90°C auf +20°C werden im 13 C-NMR-Spektrum Koaleszenzeffekte beobachtet, die verschiedenen dynamischen Prozessen entsprechen.

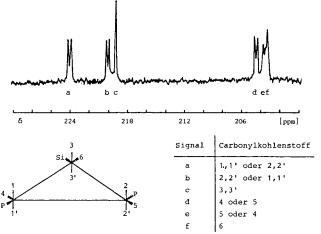


Abb. 1. $^{13}\text{C-NMR-Spektrum des Anions} \ [\text{Ru}_3(\text{CO})_9(\text{SiPh}_3)(\text{PPh}_3)_2]^- \ (1) \ (30\% \ ^{13}\text{C-angereicherte Probe, CD}_2\text{Cl}_2/\text{CHCl}_2\text{F} \ (1:1), \ -90\,^{\circ}\text{C})$ sowie versuchsweise Zuordnung

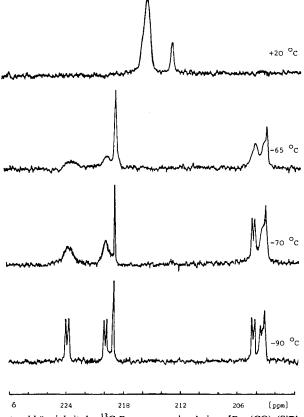


Abb. 2. Temperaturabhängigkeit der 13 C-Resonanzen des Anions $[Ru_3(CO)_9(SiPh_3)(PPh_3)_2]^-$ (1) Chem. Ber. 116 (1983)

Bei $-70\,^{\circ}$ C koaleszieren die Signale a und b, was sich durch einen intramolekularen Austausch der axialen Carbonylliganden 1,1' und 2,2' über einen Brückenmechanismus ^{8,9)} interpretieren läßt. Die bei $-65\,^{\circ}$ C einsetzende Verbreiterung der Signale d und e zeigt an, daß in diesem Temperaturbereich auch die Carbonyle 4 und 5 äquivalent werden. Bei Raumtemperatur entarten schließlich auch die Carbonylgruppen 3,3' und 6: Bei $+20\,^{\circ}$ C sind nur noch zwei Signale vorhanden. Das größere Signal bei $\delta=215.9$ entspricht vermutlich den entarteten Carbonylliganden 1,1', 2.2', 4 und 5 an den beiden phosphansubstituierten Rutheniumatomen, während das kleinere Signal bei $\delta=213.2$ ppm auf die entarteten Carbonylgruppen 3,3' und 6 am silylsubstituierten Ru-Atom zurückzuführen ist.

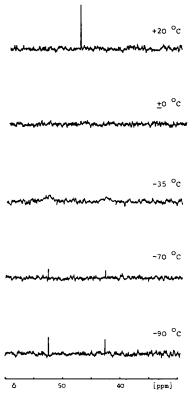


Abb. 3. Temperaturabhängigkeit der ³¹P-Resonanzen des Anions [Ru₃(CO)₉(SiPh₃)(PPh₃)₂]⁻ (1)

Im Einklang mit diesen Beobachtungen zeigen temperaturabhängige 31 P-NMR-Messungen am N(PPh₃)₂-Salz des Anions 1 bei $-65\,^{\circ}$ C eine Koaleszenz der beiden 31 P-Resonanzen ($\delta = 42.8$ und 52.6 bei $-90\,^{\circ}$ C in CD₃COCD₃); bei Raumtemperatur tritt ein Singulett bei $\delta = 46.7$ auf. Bei $-90\,^{\circ}$ C ist das Molekül starr; nur unterhalb von $-65\,^{\circ}$ C werden die beiden Phosphoratome im 31 P-NMR-Spektrum sowie die Carbonylkohlenstoffatome 4 und 5 im 13 C-NMR-Spektrum getrennt beobachtbar.

Herrn Prof. Dr. M. Herberhold, Laboratorium für Anorganische Chemie der Universität Bayreuth, sind wir für die Überlassung von Institutsmitteln sowie für wertvolle Diskussionen zu Dank verpflichtet.

Experimenteller Teil

Alle Arbeiten wurden unter gereinigtem Stickstoff durchgeführt; die verwendeten Lösungsmittel waren absolut und N_2 -gesättigt. – IR-Spektren: Perkin Elmer 297 (Lösungen), Beckman IR 4240 (Feststoffe). – NMR-Spektren: Jeol FX 90 Q (1 H, 31 P, 13 C, 29 Si). – GC-Messungen: Packard 427, Säule 7 ft × 1/8" Carbosieve S (Identifizierung von CO). – Leitfähigkeitsmessungen: WTW Zelle LF Digi 500. – Molmassebestimmung: Knauer Dampfdruckosmometer. – Elementaranalysen: Mikroanalytisches Laboratorium Pascher, Bonn; die C-Werte wurden wegen des Einschlusses von CH $_3$ OH bei der Kristallisation etwas zu niedrig gefunden.

Allgemeine Vorschrift zur Darstellung der Bis(triphenylphosphoranyliden)ammoniumsalze der Anionen 1-7, $[N(PPh_3)_2][Ru_3(CO)_9(SiR_2^1R^2)(PR_3^3)_2]$: Eine frisch dargestellte Lösung von 0.2 mmol Na $[HRu_3(CO)_{10}(SiR_2^1R^2)_2]^4$) in 30 ml THF wurde mit einem Überschuß von PR_3^3 (1 mmol für $R^3 = Ph$, Cyclohexyl; 5 mmol für $R^3 = Me$, OMe) versetzt und gerührt (10 h bei 20°C für 1, 2, 3, 5, 6; 8 h bei 40°C für 4; 30 h bei 65°C für 7). Nach Filtration über eine mit Filterflocken gepackte Fritte wurde das Lösungsmittel abgezogen (10^{-2} mbar, 40°C), der Rückstand wurde zweimal mit 10 ml Pentan gewaschen und in 50 ml Methanol gelöst. Nach Zugabe einer Lösung von 150 mg (0.26 mmol) N(PPh_3)_2Cl in 10 ml CH_3OH fielen die Bis(triphenylphosphoranyliden)-ammoniumsalze der Anionen 1 und 3 als feinkristalline, rote Niederschläge aus; im Falle der Anionen 2, 4, 5, 6 und 7 wurden die Lösungen bis zur beginnenden Kristallisation eingeengt und zur Isolierung der Produkte auf -30°C abgekühlt. Das schlecht kristallisierende Salz des Anions 2 wurde aus Dichlormethan/Diethylether (1: 2), die feinkristallinen Salze der Anionen 1 und 3 wurden aus Methanol umkristallisiert. Die Produkte wurden 8 h i. Hochvak. getrocknet.

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(triphenylphosphan)-3-(triphenylsilyl)-triangulo-triruthenat(-I) (Anion 1): Ausb. 300 mg (97%).

```
C<sub>99</sub>H<sub>75</sub>NO<sub>9</sub>P<sub>4</sub>Ru<sub>3</sub>Si (1877.9) Ber. C 63.31 H 4.03 N 0.75 P 6.60 Si 1.49
Gef. C 62.84 H 4.25 N 0.78 P 6.59 Si 1.51
```

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(trimethylphosphan)-3-(triphenylsilyl)-triangulo-triruthenat(-I) (Anion 2): Ausb. 240 mg (80%).

C₆₉H₆₃NO₉P₄Ru₃Si (1505.5) Ber. C 55.04 H 4.23 N 0.93 Gef. C 54.57 H 4.36 N 1.06

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(tricyclo-hexylphosphan)-3-(triphenylsilyl)-triangulo-triruthenat(- I) (Anion 3): Ausb. 300 mg (80%).

 $C_{99}H_{111}NO_{9}P_{4}Ru_{3}Si$ (1914.3) Ber. C 62.11 H 5.86 N 0.73 Gef. C 60.04 H 5.84 N 0.71

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(trimethylphosphit)-3-(triphenylsilyl)-triangulo-triruthenat(- I) (Anion 4): Ausb. 270 mg (84%).

C₆₉H₆₃NO₁₅P₄Ru₃Si (1601.5) Ber. C 51.74 H 3.97 N 0.87 Gef. C 50.25 H 4.22 N 0.87

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(triphenylphosphan)-3-(triethylsilyl)-triangulo-triruthenat(- I) (Anion 5): Ausb. 280 mg (81%).

C₈₇H₇₅NO₉P₄Ru₃Si (1733.8) Ber. C 60.27 H 4.37 N 0.81 Gef. C 59.56 H 4.27 N 0.81

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(triphenylphosphan)-3-(diethylmethylsilyl)-triangulo-triruthenat(- I) (Anion 6): Ausb. 300 mg (87%).

C₈₆H₇₃NO₉P₄Ru₃Si (1719.8) Ber. C 60.06 H 4.29 N 0.81 Gef. C 59.42 H 4.47 N 0.78

Chem. Ber. 116 (1983)

Bis(triphenylphosphoranyliden)ammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(triphenylphosphan)-3-(methyldiphenylsilyl)-triangulo-triruthenat(-1) (Anion 7): Ausb. 290 mg (80%).

C₉₄H₇₃NO₉P₄Ru₃Si (1815.8) Ber. C 62.17 H 4.06 N 0.77 Gef. C 60.58 H 3.89 N 0.72

Darstellung des Tetraethylammoniumsalzes des Anions 5, [NEt₄][Ru₃(CO)₉(SiEt₃)(PPh₃)₂]: Das Anion 5 wurde wie oben beschrieben dargestellt, die Reaktionslösung wurde filtriert und zur Trockne gebracht. Der Rückstand wurde zweimal mit 10 ml Pentan gewaschen und dann in 30 ml CH₃OH gelöst; nach Zugabe einer Lösung von 210 mg (1 mmol) NEt₄Br in 10 ml CH₃OH wurde die Lösung auf etwa 10 ml konzentriert und auf –30°C abgekühlt. Die schwarzroten Kristalle wurden mit wenig kaltem Methanol gewaschen und 8 h i. Hochvak. getrocknet. Tetraethylammonium-1,1,1,2,2,2,3,3,3-enneacarbonyl-1,2-bis(triphenylphosphan)-3-(triethylsilyl)-triangulo-triruthenat(–1) (Anion 5): Ausb. 223 mg (84%).

C₅₉H₆₅NO₉P₂Ru₃Si (1325.5) Ber. C 53.46 H 4.95 N 1.06 Gef. C 52.58 H 4.95 N 1.00

[39/83]

G. Süβ-Fink, Angew. Chem. 94, 72 (1982); Angew. Chem., Int. Ed. Engl. 21, 73 (1982); Angew. Chem. Suppl. 1982, 71.

²⁾ G. Süß-Fink und J. Reiner, J. Organomet. Chem. 221, C36 (1981).

³⁾ G. Süß-Fink und J. Reiner, J. Mol. Catal. 16, 231 (1982).

⁴⁾ G. Süβ-Fink, J. Ott, B. Schmidkonz und K. Guldner, Chem. Ber. 115, 2487 (1982).

 ⁵⁾ B. F. G. Johnson, J. Lewis und D. A. Pippard, J. Chem. Soc., Dalton Trans. 1981, 407.
 6) Die C-Werte wurden wegen Methanol-Einschluß bei der Kristallisation zu niedrig gefunden; die Analysenwerte deuten auf folgende Zusammensetzungen hin:

 $[[]N(PPh_3)_2][1] \cdot 1CH_3OH; [N(PPh_3)_2][3] \cdot 4CH_3OH;$

 $[[]N(PPh_3)_2][4] \cdot 4CH_3OH; [N(PPh_3)_2][5] \cdot 1CH_3OH; [N(PPh_3)_2][7] \cdot 4CH_3OH; [N(PPh_3)_2][6] \cdot 1CH_3OH; [N(PPh_3)_2][7] \cdot 4CH_3OH.$

⁷⁾ R. D. Feltham und R. G. Hayter, J. Chem. Soc. 1964, 4587.

⁸⁾ B. F. G. Johnson, J. Lewis, B. E. Reichert und K. T. Schorpp, J. Chem. Soc., Dalton Trans. 1976, 1403.

⁹⁾ F. A. Cotton und B. E. Hanson, Inorg. Chem. 16, 3369 (1977).